Тепловая энергия в виде горячей воды или пара транспортируется от источника теплоты (ТЭЦ или крупной котельной) к тепловым потребителям по специальным трубопроводам, называемым тепловыми сетями.
Тепловая сеть — один из наиболее дорогостоящих и трудоемких элементов систем централизованного теплоснабжения. Она представляет собой теплопроводы— сложные сооружения, состоящие из соединенных между собой сваркой стальных труб, тепловой изоляции, компенсаторов тепловых удлинений, запорной и регулирующей арматуры, строительных конструкций, подвижных и неподвижных опор, камер, дренажных и воздухоспускных устройств. Проектирование тепловых сетей производят с учетом положений и требований СНиП 2.04.07—86 «Тепловые сети».
По количеству параллельно проложенных теплопроводов тепловые сети могут быть однотрубными, двухтрубными и многотрубными. Однотрубные сети наиболее
экономичны и просты. В них сетевая вода после систем отопления и вентиляции должна полностью использоваться для горячего водоснабжения. Однотрубные тепловые сети являются прогрессивными, с точки зрения значительного ускорения темпов строительства тепловых сетей. В трехтрубных сетях две трубы используют в качестве подающих для подачи теплоносителя с разными тепловыми потенциалами, а третью трубу — в качестве общей обратной. В четырехтрубных сетях одна пара теплопроводов обслуживает системы отопления и вентиляции, а другая — систему горячего водоснабжения и технологические нужды.
В настоящее время наибольшее распространение получили двухтрубные тепловые сети, состоящие из подающего и обратного теплопроводов для водяных сетей и паропровода с конденсатопроводом для паровых сетей. Благодаря высокой аккумулирующей способности воды, позволяющей осуществлять дальнее теплоснабжение, а также большей экономичности и возможности центрального регулирования отпуска теплоты потребителям, водяные сети имеют более широкое применение, чем паровые.
Водяные тепловые сети по способу приготовления воды для горячего водоснабжения разделяются на закрытые и открытые. В закрытых сетях для горячего водоснабжения используется водопроводная вода, нагреваемая сетевой водой в водоподогревателях. При этом сетевая вода возвращается на ТЭЦ или в котельную. В открытых сетях вода для горячего водоснабжения разбирается потребителями непосредственно из тепловой сети и после использования ее в сеть уже не возвращается. Качество воды в открытой тепловой сети должно отвечать требованиям ГОСТ 2874—82*.
Тепловые сети разделяют на магистральные, прокладываемые на главных направлениях населенных пунктов, распределительные — внутри квартала, микрорайона и ответвления к отдельным зданиям.
Радиальные сети (рис. 18.8, а) сооружают с постепенным уменьшением диаметров теплопроводов в направлении от источника теплоты. Такие сети наиболее просты и экономичны по начальным затратам. Их основ ной недостаток — отсутствие резервирования. Во избежание перерывов в теплоснабжении (в случае аварии на магистрали радиальной сети прекращается теплоснабжение потребителей, присоединенных на аварийном участке) согласно СНиП 2.04.07—86 должно предусматриваться резервирование подачи теплоты потребителям за счет устройства перемычек между тепловыми сетями смежных районов и совместной работы источников теплоты (если их несколько). Радиус действия водяных сетей во многих городах достигает значительной величины (15—20 км).
Рис. 18.8. Схемы тепловых сетей: тупиковая (а) и кольцевая (б)
1— лучевой магистральный теплопровод; 2 — тепловые потребители; 3 — перемычки; 4 — районные (квартальные) котельные; 5 — секционирующие камеры; 6 — кольцевая магистраль; 7 — центральные тепловые пункты; 8 — промышленные предприятия
Устройством перемычек тепловая сеть превращается в радиально-кольцевую, происходит частичный переход к кольцевым сетям. Для предприятий, в которых не допускается перерыв в теплоснабжении, предусматривают дублирование или кольцевые (с двусторонней подачей теплоты) схемы тепловых сетей (рис. 18.8,б). Хотя кольцевание сетей существенно удорожает их, но зато в крупных системах теплоснабжения значительно повышается надежность теплоснабжения, создается возможность резервирования, а также повышается качество гражданской обороны.
Паровые сети устраивают преимущественно двухтрубными. Возврат конденсата осуществляется по отдельной трубе — конденсатопроводу. Пар от ТЭЦ по паропроводу со скоростью 40—60 м/с и более идет к месту потребления. В тех случаях, когда пар используется в теплообменниках, конденсат его собирается в конденсатных баках, откуда насосами по конденсатопроводу возвращается на ТЭЦ.
Рис. 18.9. Прокладка теплопроводов на мачтах
Рис. 18.10. Проходной канал из сборных железобетонных блоков
Направление трассы тепловых сетей в городах и других населенных пунктах должно предусматриваться по районам наиболее плотной тепловой нагрузки с учетом существующих подземных и надземных сооружений, данных о составе грунтов и уровне стояния грунтовых вод, в отведенных для инженерных сетей технических полосах параллельно красным линиям улиц, дорог, вне проезжей части и полосы зеленых насаждений. Следует стремиться к наименьшей протяженности трассы, а следовательно, к меньшим объемам работ по прокладке.
По способу прокладки тепловые сети делят на подземные и надземные (воздушные). Надземная прокладка труб (на отдельно стоящих мачтах или эстакадах, на кронштейнах, заделываемых в стены здания) применяется на территориях промышленных предприятий, при сооружении тепловых сетей вне черты города, при пересечении оврагов и т. д. (рис. 18.9). Надземная прокладка тепловых сетей рекомендуется преимущественно при высоком стоянии грунтовых вод.
Рис. 18.11. Непроходные каналы марки КЛ (а), КЛп (б) и КЛс (в)
Преобладающим способом прокладки трубопроводов тепловых сетей является подземная прокладка: в проходных каналах и коллекторах совместно с другими коммуникациями; в полупроходных и непроходных каналах; бесканальная (в защитных оболочках различной формы и с засыпной теплоизоляцией).
Наиболее совершенный, но и более дорогой способ представляет собой прокладка теплопроводов в проходных каналах (рис. 18.10), которые применяют при наличии нескольких теплопроводов больших диаметров. При температуре воздуха в каналах более 50 °С предусматривают естественную или механическую вентиляцию.
Вытяжные шахты на трассе размещают примерно через 100 м. Приточные шахты располагают между вытяжными и по возможности объединяют с аварийными люками. На участках тепловых сетей с большим числом трубопроводов и высокой температурой теплоносителей устраивают механическую вентиляцию. При температуре воздуха в каналах ниже 40 °С их периодически проветривают, открывая люки и входы. Во время производства ремонтных работ можно применять механический передвижной вентиляционный агрегат. В больших городах строят так называемые городские коллекторы, в которых прокладывают теплопроводы, водопровод, электрические и телефонные кабели.
Полупроходные каналы состоят из стеновых блоков Г-образной формы, железобетонных днищ и перекрытий. Строят их под проездами с интенсивным уличным движением, под железнодорожными путями, при пересечении зданий, где затруднено вскрытие теплопроводов для ремонта. Высота их обычно не превышает 1600 мм, ширина прохода между трубами 400—500 мм.
В практике централизованного теплоснабжения наиболее широко применяются непроходные каналы (рис. 18.11).
Рис. 18.12. Конструктивные элементы тепловых сетей
а —камера тепловой сети; 1— сальниковые компенсаторы; 2 — манометры; 3 — неподвижная опора; 4 — канал; б —размещение ниш по трассе теплопроводов: Н — неподвижная опора; П — подвижная опора; в — размещение компенсатора в нише:1 — подающий трубопровод; 2 — обратный трубопровод; 3 —стенка; г — сальниковый компенсатор; 1 — патрубок; 2 — грундбукса; 3 — набивка-шнур; 4 — кольцо уплотнительное; 6 — корпус; 6 — контрбукса; 7 — кольцо предохранительное; 8— болт: 9 — шайба; 10 — гайка; д — неподвижная щитовая опора; 1 — железобетонная плита-щит; 2 — приварные упоры; 3 —канал; 4 — бетонная подготовка: 5 —трубопроводы; 6 — дренажное отверстие; е — катковая подвижная опора: 1 — каток; 2 — направляющие; 3 — металлическая подкладка
Рис. 18.13. Бесканальная прокладка теплопроводов в монолитных оболочках из армированного пенобетона
1— армопенобетонная оболочка; 2 — песчаная подсыпка; 3 — бетонная подготовка; 4 — грунт
Разработаны типовые каналы трех видов: канал марки КЛ, состоящий из лотков и железобетонных плит перекрытия (рис. 18.11,а); канал марки КЛп, состоящий из плиты-днища и лотка (рис. 18.11,б) и канал марки КЛс, состоящий из двух лотков, уложенных один на другой и соединенных на цементном растворе с помощью двутавровых балок (рис. 18.11, в).
По трассе подземного теплопровода устраивают специальные камеры и колодцы для установки арматуры, измерительных приборов, сальниковых компенсаторов и др., а также ниши для П-образных компенсаторов (рис. 18.12). Подземный теплопровод прокладывают на скользящих опорах. Расстояние между опорами принимают в зависимости от диаметра труб, причем опоры подающего и обратного трубопроводов устанавливают вразбежку.
Тепловые сети в целом, особенно магистральные, являются серьезным и ответственным сооружением. Их стоимость, по сравнению с затратами на строительство ТЭЦ, составляет значительную часть.
Распределение стоимости прокладки тепловых сетей между строительными, монтажными и изоляционными работами может быть представлено в следующем виде:
1) стоимость строительных работ для внутриквартальных и межквартальных тепловых сетей в сухих грунтах составляет 80 % и в мокрых — 90 % общей стоимости трассы, остальные 10—20 % соответственно составляют стоимость монтажных и изоляционных работ;
2) стоимость строительных работ для магистральных тепловых сетей в сухих грунтах составляет в среднем 55 %, в мокрых—75 %.
Бесканальный способ прокладки теплопровода (рис. 18.13) — самый дешевый. Применение его позволяет снизить на 30—40 % строительную стоимость тепловых сетей, значительно уменьшить трудовые затраты и расход строительных материалов. Блоки теплопроводов изготовляют на заводе. Монтаж теплопроводов на трассе сводится лишь к укладке автокраном блоков в траншею и сварке стыков.
Заглубление тепловых сетей от поверхности земли или дорожного покрытия до верха перекрытия канала или коллектора принимается, м: при наличии дорожного покрытия — 0,5, без дорожного покрытия — 0,7, до верха оболочки бесканальной прокладки — 0,7, до верха перекрытия камер — 0,3.
В настоящее время свыше 80 % тепловых сетей проложены в непроходных каналах, около 10 % — надземные, 4 % — в проходных каналах и тоннелях и около б % — бесканальные. Средний срок службы подземных канальных теплопроводов вдвое меньше нормативного и не превышает в среднем 10—12 лет, а бесканальных с изоляцией на битумовяжущей основе — не более 6— 8 лет. Основной причиной повреждений является наружная коррозия, возникающая из-за отсутствия или некачественного нанесения антикоррозионных покрытий, неудовлетворительного качества или состояния покровных слоев, допускающих избыточное увлажнение изоляции, а также вследствие затопления каналов из-за неплотностей конструкций. Как у нас в стране, так и за рубежом ведется постоянный поиск, а в последние годы особенно интенсивно, в направлении повышения долговечности теплопроводов, надежности их работы и снижения затрат на их сооружение.
К.В. Тихомиров, Э.С. Сергеенко
“Теплотехника. Теплогазоснабжение и вентиляция”